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ABSTRACT
Code generation aims to generate a code snippet automatically from
natural language descriptions. Generally, the mainstream code gen-
eration methods rely on a large amount of paired training data,
including both the natural language description and the code. How-
ever, in some domain-specific scenarios, building such a large paired
corpus for code generation is difficult because there is no directly
available pairing data, and a lot of effort is required to manually
write the code descriptions to construct a high-quality training
dataset. Due to the limited training data, the generation model can-
not bewell trained and is likely to be overfitting, making themodel’s
performance unsatisfactory for real-world use. To this end, in this
paper, we propose a task augmentation method that incorporates
domain knowledge into code generation models through auxil-
iary tasks and a Subtoken-TranX model by extending the original
TranX model to support subtoken-level code generation. To verify
our proposed approach, we collect a real-world code generation
dataset and conduct experiments on it. Our experimental results
demonstrate that the subtoken-level TranX model outperforms the
original TranX model and the Transformer model on our dataset,
and the exact match accuracy of Subtoken-TranX improves signifi-
cantly by 12.75% with the help of our task augmentation method.
The model performance on several code categories has satisfied the
requirements for application in industrial systems. Our proposed
approach has been adopted by Alibaba’s BizCook platform. To the
best of our knowledge, this is the first domain code generation
system adopted in industrial development environments.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3558965

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; • Computing methodologies → Artificial intelli-
gence.

KEYWORDS
Code Generation, Domain Knowledge, Task Augmentation.
ACM Reference Format:
Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo, Yankun Zhen, and Ge Li.
2022. Incorporating Domain Knowledge through Task Augmentation for
Front-End JavaScript Code Generation. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’22), November 14–18, 2022, Singa-
pore, Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3540250.3558965

1 INTRODUCTION
Automatic code generation refers to generating code according to
a function description in natural language. The code generation
technology can improve the automation level of software devel-
opment and reduce the workload of software developers, thereby
effectively improving the efficiency and quality of software develop-
ment and maintenance. In recent years, researchers have proposed
a series of deep-learning code generation methods with remarkable
achievements, such as [5, 18, 19, 25].

Despite the success of the above code generation methods, for
all we know, we rarely see the application of code generation in
existing industrial systems. Generally, the mainstream code gener-
ation methods rely on the accessibility of abundant training data
for their success. However, the code in the industrial development
environment is usually under a specific domain scenario, where
directly paired training data is not always available. In our scenario,
we want to generate JavaScript expressions from natural language
descriptions, and our major limitation is the insufficient training
data problem. In order to perform code generation, we have to
build the training dataset from scratch, i.e., mine a group of code
and manually write the corresponding semantic descriptions in
natural language for each of them. The cost of this process is quite
expensive for the construction of a high-quality dataset, so we can
only obtain relatively small-scale paired training data. The lack
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of training data makes it hard for the neural networks to learn
the effective representation to generate code, which dramatically
decreases the model performance.

In this paper, we propose a task augmentation method to al-
leviate the negative effect of insufficient paired training data by
incorporating domain knowledge into the code generation model.
We design some auxiliary tasks and utilize the domain knowledge
that is easily acquired from the codebase and requirement docu-
ments as paired training data for the tasks. By training the model
together with the code generation main task and auxiliary tasks, the
model is able to learn the domain knowledge from the extra tasks
and improve its performance on code generation. Furthermore,
we present the Subtoken-TranX model by extending the original
TranX [25] model to support subtoken-level code generation. The
Subtoken-TranX model helps learn the token embedding well and
captures the relationship of tokens containing the same subtoken
from limited training data. We carry out a series of experiments
to demonstrate the effectiveness of task augmentation with do-
main knowledge and the Subtoken-TranX model. After applying
the task augmentation, the Subtoken-TranX achieves a top-1 exact
match accuracy of 33.16% and top-5 accuracy of 40.31%, compared
to 20.41% and 29.08%, respectively, without task augmentation. The
Subtoken-TranX model also outperforms the original TranX model
and Transformer model. The results on two categories of data have
satisfied the requirements for application in actual industrial sys-
tems, and the BizCook platform has adopted our approach.

Our contributions can be summarized below:

• We propose a real-world code generation task and the corre-
sponding dataset1. The dataset consists of 2,489 paired data
of JavaScript expressions extracted from Alibaba’s codebase
and corresponding descriptions in the natural language of
Chinese.

• We propose a task augmentation method to incorporate
domain knowledge to code generation models through aux-
iliary tasks.

• We present the Subtoken-TranX model by extending the
original TranX model to support subtoken-level code gener-
ation.

• We carry out experiments and demonstrate the effective-
ness of the task augmentation method and Subtoken-TranX
model. Our approach has been adopted by Alibaba’s BizCook
platform and is continuously supporting front-end develop-
ment.

2 BACKGROUND
The application scenario of our work is the BizCook platform in
Alibaba. This platform is a front-end development platform tai-
lored based on the business characteristics of Taobao. This system
covers the main stages of the entire process of front-end develop-
ment, including requirements, design, coding, and testing. It aims
to introduce intelligent approaches to the development process and
improve development efficiency. Among them, an important direc-
tion of exploration is to generate code from requirement documents
and design drafts.

1Available online at https://tianchi.aliyun.com/dataset/dataDetail?dataId=107819.

In front-end development, most of the front-end code falls into
these three categories:

• User interface code. They are used to control the layout, style,
etc., of UI elements, such as the position of a text area and
the color of a button.

• Business logic code. They are used to control displayed con-
tent of UI elements, such as the text content in a text area or
on a button.

• Control flow code. They are used to control the click or other
behaviors of elements, such as the on-click event of a button.

Among the three categories, the user interface code is closely re-
lated to the design drafts. In our previous works, we have already
developed a tool called imgcook2 to directly generate user inter-
face code from Sketch, Photoshop, and Figma design drafts. On the
basis of imgcook, we want to extend the code generation ability
of the BizCook system to other categories. Since the descriptions
of business logic code and control flow code are written in the
requirement documents, this feature requires the ability to read the
natural language descriptions in the requirement documents, con-
vert them into JavaScript expressions, and bind the expressions to
UI elements. It is a challenge to generate all types of front-end code
simultaneously. Considering that the business logic code accounts
for a large proportion of front-end code and is less complicated
than the control flow code, we decide first to generate the business
logic code at the present stage. This paper presents our practice in
dealing with the task of generating the business logic JavaScript
code from natural language descriptions.

3 DATASET AND PREPROCESSING
3.1 Code Generation Dataset
In the BizCook platform, all the skeletons of code are predefined,
and the platform provides ways to set the style, behavior, and
display content. During coding, programmers only need to select a
UI element and write the target style or string value expressions in
JavaScript. The platform will insert the expressions into JavaScript
code and bind them to the specific UI element. So all we need
to generate is JavaScript expressions. As we stated in the third
paragraph of section 2, in the current stage, we only focus on the
business logic code expressions that control the display text in
the UI elements. Therefore, we randomly collect some expressions
from Alibaba’s codebase, filter and de-duplicate them, and get a
collection of business logic code expressions. In order to get the
complete paired data, we still have to manually produce the natural
language description under specific rules for each code. Finally, we
obtain a paired dataset containing 2,489 examples. We randomly
split the dataset into a training set and a test set containing 2293
and 196 examples. When conducting experiments, we randomly
sample a subset from the training set as the validation set. Table 1
shows the details of the dataset.

In our dataset, we can further divide the JavaScript logic expres-
sions into four categories:

• string template expression (STE). Code of this category is
string expressions produced by filling a string template with
variables.

2https://www.imgcook.com.
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Table 1: Details of code generation dataset. Since the descrip-
tion is written in Chinese, the token numbers are counted
as the number of Chinese characters. All details are counted
after the preprocessing described in section 3.2.

Train Set Test Set

# Examples 2,293 196
# Desc. Tokens 43,719 3,874
# Code Tokens 25,806 2,256
# Avg. Desc. Tokens 19.07 19.77
# Avg. Code Tokens 11.25 11.51

• OR logic expression (OLE). Code of this category are several
values joined by short circuit OR operator.

• condition expression (CE). Code of this category is often a
ternary conditional expression.

• data processing expression (DPE). Code of this category often
contains processing to a data, such as taking a substring of a
string.

Table 2 shows examples of each category. In actual use, the input
descriptions are in Chinese, and we provide the corresponding
English translation here. We tag every piece of data in the test set
with category labels and count the test set details by category. Table
3 shows the details of test set by category.

3.2 Preprocessing
Considering that our dataset scale is small and the variability and
noise in the dataset can affect code generation performance, we
perform a series of preprocessing on the original data. In this section,
we introduce three main preprocessing methods we use.

3.2.1 Code Canonicalization. In our dataset, the code have some
stylistic differences since the codes are not written by the same
person. For example, developers have different preferences of using
single and double quotes in string literals and whether to add semi-
colons at the end of statements, etc. We use the Esprima3 parser
to parse the JavaScript code into an abstract syntax tree (AST) and
then use the Escodegen4 code generator to convert the AST back
to a canonicalized code. In this way, we can eliminate the stylistic
differences between the codes to a certain extent.

3.2.2 String Literal Replacement. In our dataset, a proportion of
code contains string literals. According to our regulations, all the
string literals in the code must appear in the natural language de-
scription. Therefore, we can use placeholders to replace these string
literals to simplify the code generation. As shown in the table 4, for
string literals that do not contain variables, we use placeholders
such as <STR1>, <STR2> to replace string literals. For string literals
containing variables such as “xx”, “yy”, etc., we replace these string
literals segment-wise with placeholders. These placeholders will
be considered a single token by the model.

3.2.3 Member Access Simplification. A lot of code includes access
to member variables. We simplified the member variable access in
the code by removing the accessed object and only keeping the
3https://esprima.org
4https://github.com/estools/escodegen

accessed fields. For examples, task.status is simplified to status
and task.assets.completeBtn is simplified to completeBtn. We
simplify the member access because we cannot predict the accessed
object correctly from the description without programming context.
Other modules in the development platform will search the pro-
gramming context for the proper accessed object using techniques
such as code static analysis and will complete the member access
expression.

4 METHODOLOGY
We explain the details of our code generation method in this section.
In section 4.1, we present our method of applying a variable seman-
tic table for task augmentation. In section 4.2, we describe the archi-
tecture of our Subtoken-TranX model. In section 4.3, we describe
the details of how we make Subtoken-TranX support JavaScript
language, which also applies in the original TranX model.

4.1 Task Augmentation
As we face insufficient training data, we want to leverage external
domain knowledge to assist with code generation. We found that
variable names occupy a large part of the front-end JavaScript code
we study. Thus, it benefits a lot if we make the model learn more
about the correct use of variable names from the domain knowl-
edge. Following this idea, we think it is helpful if we can obtain a
paired dataset of variable names and their semantic meaning and
incorporate this data into the code generation model. We extract a
variable semantic table containing the name and semantic descrip-
tion of variables commonly used in front-end development. We
collect these variable–description paired data from various sources,
including the following:

• Requirement documents. The requirement documents may
contain some variable name conventions for variables used
across modules in the project. We can gather these variable
name conventions and add them to the variable semantic
table.

• Codebase. In the development of large-scale projects, devel-
opers usually use some protocols for serializing data struc-
tures (Protocol Buffer, Thrift, etc.) to describe different data
structures. For the fields in the data structures, there are
usually comments that describe the meanings of the fields.
We can collect these fields and semantic meanings and add
them to the variable semantic table.

• Database field definitions. Tables in the database may have
corresponding documents to describe the semantics of each
field in the table. We can also use these fields and semantic
meanings to build the variable semantic table.

Eventually, we collect a variable semantic table containing 15,525
variables that are commonly used in front-end developments. Some
of the examples are shown in table 5.

There are many ways to incorporate the variable semantic table
into the code generation model. For example, we can use the vari-
able semantic table to pre-train the model and then use the code
generation data to fine-tune the model. In our attempts, we use a
task augmentation method to leverage the variable semantic table
for code generation.
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Table 2: Examples of data in different categories.

Category String template expression
Description 显示“优惠券已抵扣xx元”，xx为折扣价
Desc. Trans. Displays “The coupon has been deducted xx yuan”, xx is the discounted price
Code {`优惠券已抵扣${discountPrice}元`}

Category OR logic expression
Description 动态展示用户昵称，兜底为空
Desc. Trans. Dynamically display the user’s nickname, the default value is empty
Code { user && user.nick || " " }

Category Condition expression
Description 如果内容类型为直播，则展示直播时间描述，否则展示营销时间描述
Desc. Trans. If the content type is live, show the description of the live time, otherwise show the description of the marketing time
Code {contentType === ’live’ ? liveTimeDesc : marketingTimeDesc}

Category Data processing expression
Description 动态展示金币展示价格小数部分
Desc. Trans. Dynamically display the fractional part of coin show price
Code {`${data.coinShowPrice.split(".")[1]}`}

Table 3: Details of test data by category.

ST OLE CE DPE

# Examples 49 71 71 5
# Desc. Tokens 662 1,242 1,856 114
# Code Tokens 503 609 1,053 91
# Avg. Desc. Tokens 13.51 17.49 26.14 22.80
# Avg. Code Tokens 10.27 8.58 14.83 18.20

Task augmentation is the way of training a neural network with
multiple tasks. In that way, the model can learn more knowledge
from the auxiliary tasks and improve the main task’s performance.
In our practice, we take the variable semantic table as domain
knowledge and design auxiliary tasks to train the model with the
main code generation task. This task augmentation method has two
main benefits. First, the model can learn more about the relations
between variable semantics and variable names from the auxiliary
task and use it in code generation. Thus the model may make better
predictions of variable names during code generation and improve
the overall performance. Second, the addition of auxiliary tasks
enlarges the training data size and reduces the overfitting of the
model.

Many different auxiliary tasks can leverage the variable semantic
table as training data. The most straightforward task is to predict
variable names from variable semantic meanings. This task requires
themodel to understand the variable semanticmeanings and predict
the correct variable name. However, the output of this auxiliary
task is not a complete code, and naturally, we can not convert it
into a legal abstract syntax tree. So we cannot apply this auxiliary
task to tree-based code generation methods such as TranX. We can
only use this auxiliary task on token sequence-based methods.

In order to apply the task augmentation in AST-based code gen-
eration methods, we propose another auxiliary task. We found that
for a string template expression that has no other string literals to
join with, the code is just a variable name plus syntax symbols such
as braces and semicolons. We can transform the variable semantic

table into these string template expressions. Taking the “picUrl–图
片链接(link of the picture)” as an example, we can rewrite the
input as “展示图片链接(show link of the picture)” and the output
as “{ picUrl; }”. In that way, we write the output to a legal code
and can be parsed to an abstract syntax tree so that we can apply
the auxiliary task to AST-based code generation methods. Through
that rewrite, we have also largely narrowed the gap between the
main task and auxiliary task, enabling task augmentation methods
to be more effective. We adopt this auxiliary task in our code gener-
ation model. We will compare this auxiliary task with the variable
names predicting task for token sequence-based code generation on
the Transformer model. We’ll also compare the task augmentation
method with the pre-train method.

4.2 Subtoken-TranX Model
The original TranX model generates code at the token level. In
that way, an identifier corresponds to a token in the vocabulary.
This setting is not friendly to code generation under small-scale
training data. The token-level vocabulary is usually large, so the
model needs to maintain a large embedding matrix, which makes
the model easy to overfit. And the identifiers in code may appear
only a few times in the training set, so it is hard for the model to
learn a good word embedding representation. Besides, the model
may fail to capture the relationship of tokens containing the same
subtoken from limited training data. A better way is to generate
code at the subtoken level.

To generate code at the subtoken level, we subtokenize all the
identifiers according to case boundaries for identifiers in the camel
case and underscores for identifiers in the snake case [2] for all the
code. For example, the identifier liveTimeDescwill be split to live,
##Time, and ##Desc. The prefix ## indicates that this subtoken and
the previous one are split from the same token, and we need to
join them together when converting subtokens back to tokens. We
choose not to use statistical-based subtokenization methods such
as BPE [17] because we think the distribution of small-scale corpus
is not statistically significant. Thus, the subtokens learned with
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Table 4: Examples of string literal replacement

Original Description 判断是否幸运，条件成立则显示‘恭喜你押中啦’，否则显示‘很遗憾未押中’
Ori. Desc. Translation Test if lucky or not, display ‘Congratulations on your bet’ if the conditions are met, otherwise display

‘Unfortunately not betting’
Original Code {isLucky ? ’恭喜你押中啦’ : ’很遗憾未押中’}
Simplified Description 判断是否幸运，条件成立则显示‘<STR1>’，否则显示‘<STR2>’
Simp. Desc. Translation Test if lucky or not, display ‘<STR1>’ if the conditions are met, otherwise display ‘<STR2>’
Simplified Code {isLucky ? ’<STR1>’ : ’<STR2>’}

Original Description 显示‘满xx使用’，xx为起步费
Ori. Desc. Translation Displays ‘For orders over xx, use the coupon’, xx is the starting fee
Original Code {’满’ + startFee + ’使用’}
Simplified Description 显示‘<STR1> xx <STR2>’，xx为起步费
Simp. Desc. Translation Displays ‘<STR1> xx <STR2>’, xx is the starting fee
Simplified Code {’<STR1>’ + startFee + ’<STR2>’}

Table 5: Examples of the variable semantic table

Variable Name Variable Semantic

shopLogo 店铺标志(shop logo)
beforePromotionPrice 促销前价格(price before promotion)
storeCityName 门店所属城市(city the store located)
roomStatus 直播状态(live room status)
picUrl 图片链接(link of the picture)
· · · · · ·

BEP from the small-scale corpus may not truly reflect the actual
distribution of subtokens andmay not achieve the best performance.

To perform the subtoken-level code generation, we build our
Subtoken-TranX model based on the original TranX model. There
are three stages to transition from natural language description to
code in Subtoken-TranX. First, the encoder-decoder neural network
in TranX takes the natural language description as input and then
generates a sequence of actions to construct the AST. In this stage,
themodel will check the syntax of the target programming language
andmake sure the generated actions can be used to build a valid AST.
Second, we construct the AST with the generated action sequence
in the first stage. Third, we convert the AST to target code. The
AST-constructing actions defined in the original TranX model have
three types:

• ApplyConstr[𝑐]. This action applys a construction rule 𝑐
on current field of the AST under construction.

• Reduce. This action marks the end of generation of the
current field with optional or multiple cardinalities.

• GenToken[𝑣]. This action generates a terminal token as a
leaf node to the current field.

In the original TranX model, the generation of a terminal token
corresponds to one and only one GenToken action, so the origi-
nal TranX model only supports token-level code generation but
not subtoken-level code generation. To enable the model to sup-
port subtoken-level generation, we need to do some modifications
to the GenToken action. We replace the GenToken action with
GenSubtoken in the Subtoken-TranX model. We stipulate that
at each position of AST that needs to generate a terminal symbol,

the model can generate multiple GenSubtoken actions, of which
each GenSubtoken action generates a subtoken. We use a special
token <EOT> to indicate that all the subtokens of the token in the
current field have been completely generated. The subtokens gen-
erated by these consecutive GenSubtoken actions will be joined
together to form the token generated at the current position and
inserted into the AST under construction. The model will then
proceed to the generation of the next field. With this modifica-
tion, the Subtoken-TranX model can support subtoken-level code
generation. Figure 1 show an example of JavaScript AST and the
sequence of actions used to construct the AST. In this example, the
identifier contentType contains two subtokens which correspond
to the GenSubtoken actions in time step 𝑡7,1 and 𝑡7,2. In time step
𝑡7,3, the model generates the <EOT>, then it merges all the consec-
utive subtokens generated in this field to the token contentType
and inserts it to the AST under construction. The generation of
liveTimeDesc and marketingTimeDesc is also similar.

Noticing that this modification is target programming language
agnostic, the Subtoken-TranX model can be used to generate code
in other programming languages besides JavaScript. We can re-
place the original TranX model with the Subtoken-TranX model
whenever subtoken-level generation is preferred.

The architecture of neural networks in Subtoken-TranX follows
the original TranX in [25]. We compute the probabilities of gener-
ating an action sequence z as

𝑝 (z|x) =
∏
𝑡

𝑝 (𝑎𝑡 |𝑎<𝑡 , x). (1)

The encoder is a bidirectional LSTM [8] which encodes the input
utterance {𝑥𝑖 }𝑛𝑖=1 into representations {h𝑖 }𝑛𝑖=1. The decoder is also
an LSTM network which computes the hidden state s𝑡 at each time
step as

s𝑡 = 𝑓LSTM ( [a𝑡−1; s̃𝑡−1; p𝑡 ] , s𝑡−1) . (2)

The inputs of decoder LSTM are three vectors. a𝑡−1 is the embedding
of last action. s̃𝑡−1 is the attention result computed as

𝑠𝑡 = tanh (𝑊𝑐 [𝑐𝑡 ; 𝑠𝑡 ]) , (3)

where 𝑐𝑡 is the context vector computed in attention [14] with
encoded results h𝑖𝑛𝑖=1. p𝑡 is parent feeding information which is the
concatenation of the embedding of the frontier field n𝑓𝑡 and 𝑠𝑝𝑡 ,
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Code: {contentType === ’live’ ? liveTimeDesc : marketingTimeDesc}

body

BlockStatement

expression

ExpressionStatement

test consequent alternate

ConditionalExpression

operator left right

BinaryExpression

name

Identifier

name

Identifier

StrictEqual

name

Identifier

value

Literal

contentType 'live'

liveTimeDesc marketingTimeDesc

t1

t2

t3

t4

t5 t6

t7

t8

t9,t10,t11

t12

t13

t14

t15

f1

f2

f3 f4 f5

f6 f7 f8

f9 f10

f11 f12

𝑡 𝑛𝑓𝑡 Action

𝑡1 root BlockStatement(stmt* body)
𝑡2 𝑓1 ExpressionStatement(expr expression)
𝑡3 𝑓2 ConditionalExpression(expr test, expr alternate, expr consequent)
𝑡4 𝑓3 BinaryExpression(binary_operator operator, expr left, expr right)
𝑡5 𝑓6 StrictEqual()
𝑡6 𝑓7 Identifier(name)
𝑡7,1 𝑓9 GenSubtoken[content]
𝑡7,2 𝑓9 GenSubtoken[##Type]
𝑡7,3 𝑓9 GenSubtoken[<EOT>]
𝑡8 𝑓8 Literal(literal? value)
𝑡9 𝑓10 GenSubtoken[<SOS>]
𝑡10 𝑓10 GenSubtoken[live]
𝑡11 𝑓10 GenSubtoken[<EOS>]
𝑡12 𝑓4 Identifier(identifier name)
𝑡13,1 𝑓11 GenSubtoken[live]
𝑡13,2 𝑓11 GenSubtoken[##Time]
𝑡13,3 𝑓11 GenSubtoken[##Desc]
𝑡13,4 𝑓11 GenSubtoken[<EOT>]
𝑡14 𝑓5 Identifier(identifier name)
𝑡15,1 𝑓12 GenSubtoken[marketing]
𝑡15,2 𝑓12 GenSubtoken[##Time]
𝑡15,3 𝑓12 GenSubtoken[##Desc]
𝑡15,4 𝑓12 GenSubtoken[<EOT>]
𝑡16 𝑓1 Reduce (close the frontier field 𝑓1)

Figure 1: An example of JavaScript AST and the action sequence to generate the AST. In this example, the generation of token
liveTimeDesc of field 𝑓11 and marketingTimeDesc of field 𝑓12 is split into several actions with each action generates a subtoken.

the decoder’s state at which the constructor of 𝑛𝑓𝑓 is generated by
the ApplyConstr action.

We compute the probability of action ApplyConstr[𝑐] as
𝑝 (𝑎𝑡 = ApplyConstr[𝑐] | 𝑎<𝑡 , x) = softmax

(
a⊤𝑐 Ws̃𝑡

)
. (4)

The probability of GenSubtoken is a hybrid probability of genera-
tion and copy from input, which is formulated as
𝑝 (𝑎𝑡 = GenSubtoken[𝑣] | 𝑎<𝑡 , x) = 𝑝 (gen|𝑎𝑡 , x)𝑝 (𝑣 |gen, 𝑎𝑡 , x)

+𝑝 (copy|𝑎𝑡 , x)𝑝 (𝑣 |copy, 𝑎𝑡 , x),
(5)

where
𝑝 (𝑣 |gen, 𝑎𝑡 , x) = softmax

(
a⊤𝑐 Ws̃𝑡

)
, (6)

𝑝 (𝑣 |copy, 𝑎𝑡 , x) = softmax
(
h⊤𝑡 Ws̃𝑡

)
, (7)

and
𝑝 (gen|·), 𝑝 (copy|·) = softmax (Ws̃𝑡 ) . (8)

We add beam search on the model so that the model will predict
top-𝑘 results for every input utterance.

4.3 JavaScript Language Support
The TranX model (and our Subtoken-TranX model) uses ASDL
[21] to describe the syntax of programming languages. Most of
the previous works that use the TranX model for general-purpose
programming language code generation [9, 23, 25] use Python as
the target language. The Python language officially uses ASDL to
describe the syntax rules. So it is convenient to utilize the TranX
model for Python code generation. For the Subtoken-TranX model
to support the generation of the JavaScript code, we need to con-
struct the ASDL for the syntax rules of the JavaScript language.

ASDL is a relatively simple abstract syntax description language.
It only supports using exactly one type to constrain a field and does
not support using multiple types to constrain a field. It also does
not support using subtype to constrain a field. For programming
languageswith complex syntax rules such as JavaScript, we can only

support parts of the syntax rules of JavaScript and make particular
adaptations for some of the syntaxes.

Table 6 show 2 examples of JavaScript’s abstract syntax that are
incompatible with ASDL. In the CallExpression of JavaScript, the
type of field callee can be either Expression or Import. Given
that the ASDL only supports using exactly one type to constrain a
field, we just keep the Expression type for the field and remove
support for Import type for mostly the callee fields are of type
Expression. We do this kind of choice for all the syntaxes with mul-
tiple types for a field and keep only the most frequently used type.
In BreakStatement, the label field is specified as Identifier,
which is not a type but a subtype of Statement (or stmt in our
ASDL since we use lower case abbreviations to represent types).
Now that ASDL does not support using subtype to constrain a
field, we directly use its parent type stmt as the constrain instead
of Identifier to comply with the rules of ASDL. We relax the
type constraints in this way for all syntaxes that has the subtype
issue. This treatment brings up another problem that the gener-
ated AST containing these syntaxes may comply with ASDL syntax
constraints but is not a legal JavaScript AST. If we encounter this
situation during code generation, we simply discard this result and
adopt other results predicted by the model.

We write the ASDL of JavaScript regarding the JavaScript ab-
stract syntax in the form of Mozilla Parser API provided in the
documentation of Esprima parser. The ASDL of JavaScript we write
can cover the vast majority of the front-end JavaScript code in our
study scenario.

In addition to the ASDL of JavaScript, we write two functions to
do the conversion betweenASDLAST and JavaScript AST. The func-
tions traverse the input AST and build the output AST according
to the information of AST nodes. We use Esprima and Escodegen
to do the conversion between JavaScript AST and JavaScript code.
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Table 6: Examples of ASDL-incompatible JavaScript abstract
syntax

Syntax of CallExpression:
interface CallExpression {

type: ’CallExpression’;
callee: Expression | Import;
arguments: ArgumentListElement[];

}

ASDL of CallExpression:
expr = CallExpression(expr callee, expr* arguments)

Syntax of BreakStatement:

interface BreakStatement {
type: ’BreakStatement’;
label: Identifier | null;

}

ASDL of BreakStatement:
stmt = BreakStatement(expr? label)

So far, we have added JavaScript language support to the Subtoken-
TranXmodel and can use it to generate JavaScript code from natural
language descriptions.

5 EXPERIMENTAL SETTINGS
5.1 Setup
5.1.1 Dataset. We use the dataset presented above in section 3 for
our experiments. We randomly sample a subset from the training
set as our validation set. In the task augmentation, we use the
variable semantic table of 15,525 variables that we collected from the
codebase, database field definitions, and requirement documents.

5.1.2 Baselines. Considering that there are two main categories
of code generation models, tree-based and sequence-based, we
selected a typical model from each category as our baselines. They
are:

• TranX. The TranX model is an AST-based token-level code
generation model and performed well in previous work.

• Transformer. The Transformer model is widely-used and
achieves good performance in many sequence-to-sequence
tasks. We use it for subtoken-level code generation.

We compare our proposed Subtoken-TranX model with the two
baselines, and we also evaluate our task augmentation method on
the Subtoken-TranX and the baseline models.

5.1.3 Implementation Details. For the Subtoken-TranX and base-
line TranX model, we use the tools Esprima and Escodegen for the
conversion between JavaScript code and AST. We also use Esprima
to tokenize the JavaScript code for the baseline Transformer. We
tokenize the natural language description with NLTK and Jieba.
We subtokenize the identifier according to the case boundaries for
identifiers in the camel case and the underscores for those in the

snake case. The Subtoken-TranX model is built based on the open-
source code of TranX 5, and the Transformer model is built with
the official implementation of the Transformer model in PyTorch.

For the Subtoken-TranX and TranX models, we set the hidden
size of the encoder and decoder LSTM to 256. The embedding size
of subtokens and actions is 128. During the training process, we
use a batch size of 32 and train the model for 300 epochs. We use
Adam [10] optimizer and set the initial learning rate to 1 × 10−3.

For the Transformer model, we use the encoder and decoder
with 4 layers. We set the model size to 128, and the size of the
feed-forward network to 512. Each multi-head attention in the
Transformer model has 4 heads. During training, we use a batch size
of 32 and train the model for 300 epochs. We use the AdamW [12]
optimizer to optimize the model parameters. We use the learning
rate warming up and decay during the training process and set the
max learning rate to 1 × 10−4.

We add beam search on both Subtoken-TranX and Transformer
and set the beam width to 5 for both models.

5.2 Evaluation Metrics
We use the following evaluation metrics for the code generation:

• Exact Match Accuracy. The exact match accuracy regards
a predicted result as true when the result is exactly the same
as the reference code. This is a very strict metric. For codes
that are functionally identical but literally different, the exact
match accuracy regards the prediction as false.

• BLEU [15]. The BLEU score checks the precision of n-grams
in the predicted result and computes a composite score. We
use the corpus_bleu in NLTK to compute the BLEU score
of our result.

• Edit Similarity. The edit similarity computes the similarity
of two strings with Levenshtein edit distance.When used
in code generation, this metric indicates how much modifi-
cation the user needs to change the generated code to the
correct reference code.

6 EXPERIMENTAL RESULTS
6.1 Main Results
To verify the effectiveness of our task augmentation method that
leverages external domain knowledge for code generation and our
Subtoken-TranX model, we train the models with and without task
augmentation and compare the results of different models on code
generation. Table 7 show themain results of code generation. The re-
sults with “+TA” are the results when training the models with task
augmentation. The results show that the Subtoken-TranX outper-
forms the original TranX and Transformer model with or without
the task augmentation applied. When applied with task augmen-
tation, both the Transformer and the Subtoken-TranX model that
generate code at the subtoken level have significantly improved
their performance. The top-1 accuracy and top-5 accuracy have
improved by more than 10%. The results demonstrate the effective-
ness of our task augmentation method that incorporates external
domain knowledge for code generation on subtoken-level genera-
tion models. We also notice that the results of TranX decrease after

5https://github.com/pcyin/tranX
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Table 7: Main results of code generation

Method Acc-1 Acc-5 BLEU EditSim

Transformer 16.84 26.02 67.98 77.31
TranX 17.35 22.45 67.56 76.20
Subtoken-TranX 20.41 29.08 66.77 77.63

Transformer+TA 29.08 39.29 69.72 82.92
TranX+TA 16.33 27.55 61.66 74.77
Subtoken-TranX+TA 33.16 40.31 71.94 85.27

Table 8: Results of variable usage in code generation.

Method Precision Recall F1

Transformer 27.66 27.27 27.46
TranX 26.67 27.97 27.30
Subtoken-TranX 30.57 33.57 32.00

Transformer+TA 41.99 41.26 41.62
TranX+TA 36.12 37.76 36.92
Subtoken-TranX+TA 50.00 48.25 49.11

applying the task augmentation. We think this may be because the
addition of the semantic mapping table only has a limited effect on
the token-level generation model. On the contrary, the increase in
the vocabulary size will increase the number of models and make
it easier to overfit so that the model performance will decrease.

6.2 Results of Variable Usage
We conjecture that the task augmentation with the variable seman-
tic table enables the model to learn more about the relationship
between variable semantics and variable names from auxiliary
tasks, thereby improving the accuracy of variable usage during
code generation. To verify our conjecture, we verify the results of
variable usage in code generation. We extract all variable names
in the predicted results and the reference code on the test set and
calculate the precision, recall, and F1 of the variable usage. Table
8 show the results of variable usage in code generation. We can
see that the metrics of variable usage have great improvement on
all the models after applying the task augmentation. The results
validate our conjecture that the addition of auxiliary tasks can im-
prove the accuracy of variable usage in code generation. Among all
the models, the Subtoken-TranX model achieves the best precision,
recall, and F1 for variable usage.

6.3 Results of Different Categories
We calculated the metrics of methods on different categories of test
data. As mentioned above, we divide the data into four categories:
string template expression, OR logic expression, condition expres-
sion, and data processing expression. Figure 2 shows the result of
the four categories. We only show the results of Subtoken-TranX
and Transformer, as the TranX and Subtoken-TranX models share
a similar architecture, and the latter one performs better.

Due to the category of data processing expression only having
5 examples in the test set, results on this category of data are
not statistically significant, so we focus more on the results of

the other three categories. Overall, the performance of the string
template expressions and OR logic expressions is better than that
of the condition expressions and data processing expressions. This
is because the difficulty of generating condition expressions and
data processing expressions condition expressions is greater than
that of the other two categories. The condition expressions and
data processing expressions may involve more complex logic, and
the average number of tokens is significantly longer. Besides, there
are only a few data processing expressions for training, so the
generation of this category is even harder.

We can see from the results that after applying the task augmenta-
tion method, the performance of models have different magnitudes
of improvement on various categories of data. The results also
show that the Subtoken-TranX model outperforms the Transformer
model on three categories of data except OR logic expressions. This
inconsistency may be because the natural language descriptions
of condition expressions have more complex semantics, and the
stronger representation ability of the Transformer model can better
capture the semantics in natural language descriptions, thereby
generating better results.

For the string template expressions, the top-5 accuracy of Subto-
ken+TA is 44.90%, and the editing similarity reaches 86.21%. For
the OR logic expressions, the top-5 accuracy of Transformer+TA
is 52.11%, and the editing similarity reached 88.40%. The model
performance on these two code categories has met the require-
ments for application on actual industrial systems. Our research
achievements have been adopted to Alibaba’s BizCook system.

6.4 Results of Different Usages of Variable
Semantic Table

In section 4.1, we mentioned that there are many different ways to
leverage the variable semantic table for code generation. A straight-
forward approach in the task augmentation method is to use it for
an auxiliary task that predicts variable names from variable seman-
tic meanings. Even though we cannot use this auxiliary task on
AST-based code generation methods such as Subtoken-TranX, we
can use it on token sequence-based methods such as Transformer.
We compare the code generation results using different auxiliary
tasks for task augmentation. Besides the task augmentation method,
we can also use the variable semantic table for pre-training and
fine-tune the model with the code generation dataset.

Table 9 show the code generation results of incorporating the
variable semantic table into the model in different ways. The line of
Transfomer is the result of Transformer model training only with
code generation dataset. The “+PT” is the result of pre-training
model with variable semantic table and fine-tuning with code gen-
eration dataset. The “+VP” is the result of training model with the
auxiliary task of variable name prediction from variable semantics.
The “+CG“ is the result of training model with the auxiliary task
after rewriting the variable semantic table into code generation
paired data. The results show that all the methods of using the
variable semantic table are effective in improving code generation
performance. In line with our expectation, the task augmentation
method with the code generation auxiliary task (+CG) achieves
the best performance. It outperforms the variable prediction task
augmentation (+VP) because the auxiliary task and the main task
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Figure 2: Metrics of different categories on test data

Table 9: Results of different uses of variable semantic table

Method Acc-1 Acc-5 BLEU EditSim

Transformer 16.84 26.02 67.98 77.31
Transformer+PT 26.53 38.27 69.91 82.47
Transformer+VP 25.00 37.24 68.82 82.38
Transformer+CG 29.08 39.29 69.72 82.92

have a smaller gap. Similarly, in the pre-train method (+PT), since
the model only needs to learn one task in the fine-tuning stage, this
method also performs better than variable prediction task augmen-
tation (+VP).

6.5 Case Study
We conducted a sample analysis to compare the generated results
of different methods visually. We picked two individual examples
from the test dataset to show the generation results of models.

Table 10 shows the first example. We can see from the results
that both the Subtoken-TranX and Transformer models failed to
predict the variable trainHeadTitle without applying the task
augmentation method. The models may capture some related in-
formation from the natural language and generate corresponding
subtokens such as head and title. But finally, they fail to combine
all the subtokens in the correct way to generate the correct vari-
able name. We examine the variable semantic table we extracted
and found the variable trainHeadTitle exists in the table. After
applying the task augmentation, the model can learn the correct
variable name from the auxiliary tasks. Thus, both Subtoken-TranX
and Transformer generate the correct result in the top-1 prediction.

Table 11 shows the second example. We can find that in the
Transformer results without task augmentation, most of the results
contain the variable subTitle and the number 16. We found an
example in training data that is very similar to this example. Just
replacing the title to subTitle and 15 to 16 in this test exam-
ple, we get the similar code in training data, which is exactly the
same with the top-1 prediction of Transformer in this test exam-
ple. This behavior implies that the Transformer model has large

overfitting. The model "remembers" the content of the training
data set and directly outputs the same results when encountering
similar samples. After applying task augmentation, the top-2 result
of Transformer+TA and the top-1 result of Subtoken-TranX+TA
gives the correct predictions. This improvement shows that we
have alleviated the over-fitting of the model to a certain extent by
expanding the size of training data with task augmentation and
improving the model’s performance.

7 RELATEDWORK
This paper is related to deep learning-based code generation meth-
ods and how to incorporate external knowledge into code genera-
tion.

Code generation usually refers to generating code according to
a natural language description. Some works also refer to statement-
level code completion as code generation [20]. In natural language
processing, the semantic parsing task that converts natural lan-
guage to a logical form is similar to code generation. The solutions
for these two tasks are basically the same. So we make no dis-
tinction between related work on these two tasks and call them
code generation collectively. Overall, code generation methods with
neural networks can be divided into two categories that are token-
based methods and tree-based methods. The token-based methods
regard the input utterance and output code as token sequences
and use seq2seq network [4, 11] or Transformer to generate the
output sequence from the input sequence. The tree-based methods
have various attempts. The seq2tree network [4] generates a tree-
structured representation in top-down and breadth-first order from
natural language input. The Abstract Syntax Networks [16] gen-
erate an abstract syntax tree in depth-first order by selecting and
applying a constructor to the AST under construction. That makes
the output tree conform to the programming language syntax. The
TranX [25] generates a sequence of actions that construct an AST.
It also utilizes the programming language syntax to filter the ac-
tions that do not meet the syntax. The model architecture is more
simple than ASN and also achieves good performance. Some other
improvements to the TranX model have also resulted in improved
performance [9, 23].
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Table 10: Case study example 1.

Description 动态展示火车头标题，兜底显示‘春运火车票’
Desc. Translation Display the title of the train head, the default value is “Spring Festival Train Ticket”.

Reference Code {trainHeadTitle || ’春运火车票’;}

Subtoken-TranX Result {downTitle || ’春运火车票’;}
Transformer Result {headBannerTitle || ’春运火车票’;}

Subtoken-TranX+TA Result {trainHeadTitle || ’春运火车票’;} "

Transformer+TA Result {trainHeadTitle || ’春运火车票’;} "

Table 11: Case study example 2.

Description 判断是否显示中间，成立则展示标题前15个字，否则展示前10个字或者不展示
Desc. Translation If show the middle , display the first 15 words of the title, otherwise display the first 10 words or not display

Reference Code {isShowMid ? title.substring(0, 15) : title.substring(0, 10) || ”;}

Subtoken-TranX Result R1. {isShowMid ? title.substring(0, null) : title.substring(0, 10) || null;}
R2. {isShowMid ? title.substring(0, 15) : title.substring(0, 10) || null;}

Transformer Result R1. {isShowMid ? subTitle.substring(0, 16) : subTitle.substring(0, 10) || ”;}
R2. {isShowSuccess ? subTitle.substring(0, 16) : subTitle.substring(0, 10) || ”;}

Subtoken-TranX+TA Result R1. {isShowMid ? title.substring(0, 15) : title.substring(0, 10) || ”;} "
R2. {isShowMid ? title.substring(0, 15) : title.substring(null, 15) || ”;}

Transformer+TA Result R1. {isShowMid ? title.substring(0, 16) : title.substring(0, 10) || ”}

R2. {isShowMid ? title.substring(0, 15) : title.substring(0, 10) || ”} "

In addition to innovations in model architectures, researchers
also have proposed many ways to incorporate external knowledge
into code generation. There are retrieval-based methods that search
for a similar code snippet with the input natural language. The
code generation model can use the retrieved code to guide the code
generation [7, 26] or predict the output by editing the retrieved
code [6]. Some works utilize text–code paired corpus mined from
Stack Overflow as an external knowledge to pre-train the code
generation model [24]. With the widespread application of pre-
training techniques, many works leverage models pre-trained with
large-scale corpus data for code generation [1, 3, 13, 22] and achieve
remarkable performance.

8 CONCLUSION AND FUTUREWORKS
This paper presents our practice of applying the JavaScript code
generation method for front-end development on Alibaba’s Biz-
Cook platform. Facing the problem of insufficient training data,
we incorporate external domain knowledge for code generation
through task augmentation so that the code generation model can
perform better with the help of auxiliary training data. We also
extend the TranX model and build a Subtoken-TranX model for
subtoken-level code generation, which is also helpful in the case
of limited training data. We carry out a series of experiments and
demonstrate the effectiveness of our methods compared to baseline
methods in the case of limited training data. The results show that
our code generation method has met the application requirements
on actual industrial systems in several code categories and has been
adopted to Alibaba’s BizCook system for production.

So far, we can see that the model does not perform as well on
condition expressions and data processing expressions as the other
two categories. Our current task augmentation method only takes a
variable semantic table as domain knowledge. It thus improves the
accuracy of variable usage, which is most effective for codes that are
sensitive to variable names. For condition expressions, the variable
semantic table cannot improve the prediction of conditions, which
is an essential part of condition expressions. For data processing
expressions, the performance heavily relies on the prediction of
data processing API, which is also not presented in the variable
semantic table. In future works, we can mine a series of conditions
and their natural language descriptions from the codebase and a
series of data processing APIs from documents. We can use a similar
method as presented in this paper to design auxiliary tasks and
leverage these data for task augmentation. In that way, we can
improve the code generation performance on condition expressions
and data processing expressions. In addition, with the launch of
the code generation tool, we can continuously collect the usage
history as paired data and use it for model training. The increase
in the amount of data will also help improve the performance of
the model on various categories of data.
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